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Abstract
The present work introduces an original and new online regression method that extends the shrinkage via limit of Gibbs

sampler (SLOG) in the context of online learning. In particular, we theoretically show how the proposed online SLOG

(OSLOG) is obtained using the Bayesian framework without resorting to the Gibbs sampler or considering a hierarchical

representation. Moreover, in order to define the performance guarantee of OSLOG, we derive an upper bound on the

cumulative squared loss. It is the only online regression algorithm with sparsity that gives logarithmic regret. Furthermore,

we do an empirical comparison with two state-of-the-art algorithms to illustrate the performance of OSLOG relying on

three aspects: normality, sparsity and multicollinearity showing an excellent achievement of trade-off between these

properties.

Keywords Regression � Regularisation � Online learning � Competitive analysis

1 Introduction

Offline L1-regularised regression Tibshirani [1], known as

lasso, has been studied well in the past. In batch setting, the

goal is to find the regression model weights, w, by solving:

wlasso ¼ argmin
w2Rn

jjY� Xwjj22 þ kjjwjj1 ð1Þ

given training data X, label vector Y and a hyper-parameter

k. A Bayesian solution for lasso weights estimation using

Gibbs Sampler was proposed in Park and Casella [2] and

later developed further in Rajaratnam et al. [3] resulting in

the deterministic Bayesian lasso or better known as SLOG.

By multiplying wlasso with test data, one can obtain pre-

dictions in batch setting.

On the other hand, in online learning predictions are

made sequentially. Online learning is useful when the

application lends itself continuous learning (concept drift)

[4] or there are too much data that can’t fit into memory at

once. Most of the work related to online L1-regularised

regression relies on gradient descent methods (e.g. sub-

gradient, coordinate descent and other proximal algo-

rithms) to compute the estimates of the model weights, see,

for example, [5–8].

In contrast, the proposed algorithm learns by updating

covariance matrix. At each trial T ¼ 1; 2; . . ., our learning

algorithm receives input xT 2 Rn, makes prediction cT 2 R

and then receives the actual output yT 2 R. Arguably the

proposed method might not retain the sparsity properties

when implemented with only one pass over the data.

Nevertheless, it will have some degree of sparsity; we

leave this matter for latter part of the paper (please see

Remark 2 and Fig 2). The fundamental advantage of using

covariance-based approach is that one can obtain loga-

rithmic regret, which is so far not possible when using

gradient and sub-gradient descent approaches to solve the

least squares regression problem. In [9], it is shown that for

an arbitrary convex loss function, online gradient descent

has the regret growth rate of
ffiffiffiffi

T
p

. Moreover, in general, for

arbitrary convex loss function, this can’t be improved.

However, it is possible to obtain logarithmic regret using

the online Newton step [10], but such approach gives no

advantage in terms of time complexity over the covariance-

based approach for regression [11].

It is worth noting that SLOG assumes that the entries of

the regressor matrix are drawn from a distribution that is
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absolutely continuous with respect to Lebesgue measure

[3, 12]. We will make no such assumption for OSLOG.

The SLOG algorithm proposed by Rajaratnam et al. [3]

maximises the posterior distribution w 2 Rn given the

response y 2 Rn, i.e. argmaxw pðwjyÞ. It is assumed that

yjw follows the normal distribution and w follows the

Laplace or double exponential distribution. To derive

SLOG, Rajaratnam et al. [3] tweaks the approach men-

tioned by Park and Casella [2] for Bayesian lasso algo-

rithm. Both SLOG and the Bayesian lasso consider a

hierarchical model by writing the Laplace distribution as a

scale mixture of the Gaussian distribution [13]. The weight

updating rule of the Bayesian lasso is the joint posterior

obtained through the hierarchical model. Then, it is shown

that by using the Gibbs sampler on the joint posterior

converges to the L1-regularisation regression solution.

SLOG uses the same approach as the Bayesian lasso with a

different tuning parameter. SLOG replaces the tuning

parameter k[ 0 in (1) by a
ffiffiffiffiffi

r2
p

with known variance r2.
Consequently, as the limit r2 ! 0 of the Gibbs sampler, it

reduces to a deterministic sequence, giving the weight

updating rule of SLOG. In this work, for OSLOG same

weight updating equation as SLOG is obtained but without

the use of Gibbs Sampler. Also, a performance guarantee

for OSLOG is given. So, the major contributions of this

paper are:

1. Derivation of an algorithm for OSLOG without

considering any hierarchical representation.

2. Formulation of an upper bound on the cumulative

square loss of the OSLOG algorithm.

3. Empirical comparison with state of the art.

The organisation of the paper is as follows: The next sec-

tion introduces the derivation of OSLOG. Section 3 anal-

yses the performance guarantee followed by the empirical

study. Section 5 concludes the paper.

2 Derivation of OSLOG

We consider the online protocol which assumes that at each

trial the input arrives. Then, the algorithm predicts the

outcome before the actual outcome is revealed and

adjustment of the weights is conducted. We assume the

following prior on weights:

pðwÞ ¼ ag
2

� �n

exp �agw0D�1
wt�1

w
� �

ð2Þ

where Dwt�1
denotes the diagonal matrix such that the

diagonal vector contains the absolute value of each element

of the weight vector obtained at the previous trial. The

selected prior distribution on weights is inspired by the

Laplace distribution which is written as Tibshirani [1]:

1

2s
ejjwjj1=s; s ¼ 1

k
; k[ 0

In this paper, we consider: s ¼ 1
ag, where scalar g ¼ 1

2r2

such that a; g[ 0. Also, we replace jjwjj1 by jjD�1
2

wt�1wjj22.
Clearly in the expression jjD�1

2
wt�1wjj22, we need a restriction

on weights. So, at trial T � 1 absolute value of each ele-

ment of the weight vector should not to be zero (2). Despite

this restriction, Fig. 1 shows reasonable similarity to jjwjj1.
A visible difference is near the kink point (100, 0). To

overcome the issue of the situation where R
0
, we present the

following lemma:

Lemma 1 For all t ¼ 1; 2; . . .

aD�1
wt�1

þ
X

t

s¼1

xsx
0
s

 !�1

¼ D
1
2
wt�1 aIþ D

1
2
wt�1

X

t

s¼1

xsx
0
s

 !

D
1
2
wt�1

 !�1

D
1
2
wt�1

Proof

aD�1
wt�1

þ
X

t

s¼1

xsx
0
s

 !�1

¼ aD
�1

2
wt�1D

�1
2

wt�1 þ
X

t

s¼1

xsx
0
s

 !�1

¼ D
1
2
wt�1 aIþ D

1
2
wt�1

X

t

s¼1

xsx
0
s

 !

D
1
2
wt�1

 !�1

D
1
2
wt�1

h

Lemma 2 For any x; b 2 Rn and a symmetric positive

definite matrix A:

x0Ax� 2b0x ¼ ðx� A�1bÞ0Aðx� A�1bÞ � b0A�1b

Proof Expanding quadratic form:

ðx� A�1bÞ0Aðx� A�1bÞ ¼ x0Ax� 2b0A�1Axþ b0A�1AA�1b

¼ x0Ax� 2b0xþ b0A�1b

h

Remark 1 From Lemma 2, it immediately follows:
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w0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !

w� 2w0
X

T�1

t¼1

xtyt

 !

¼ w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

0

X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !

w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
X

T�1

t¼1

xtyt

 !

ð3Þ

Lemma 3 If an algorithm follows Bayesian strategy with

Gaussian likelihood and prior (2) such that absolute value

of the each element of the weight vector is not zero, w0 is

initialised uniformly and a[ 0, ,then the posterior distri-

bution is:

N
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1

;

0

@

1

2r2
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
1

A

Proof Expanding posterior (6), by using (2) and ignoring

the normalising constant, we get:

pðwjST�1Þ / exp

�g
X

T�1

t¼1

ðyt � w0xtÞ2 � agw0D�1
wt�1

w

 !

¼ exp �g

 

w0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !

w� 2w0
X

T�1

t¼1

xtyt þ
X

T�1

t¼1

y2t

 !!

¼ exp �g

 

w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

0

X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !

w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
X

T�1

t¼1

xtyt

 !

þ
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
X

T�1

t¼1

xtyt

 !

þ
X

T�1

t¼1

y2t

!

/ exp �g

 

w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

0

X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !

w�
X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1
0

@

1

A

ð4Þ

The last and the second last equality follows from (8) and

(3), respectively. The last proportionality (4) can be

recognised as probability density function of the multi-

variate normal distribution. h

Theorem 1 If an algorithm follows a Bayesian strategy

with Gaussian likelihood and prior (2) such that weights at

trial T � 1 are not null, w0 is initialised uniformly and

a[ 0, then the predictive distribution is expressed as:

Fig. 1 L1-norm approximation

done by OSLOG
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N
 

X

T�1

t¼1

xtyt

 !0
X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1

xT ;

1

2r2
xT

X

T�1

t¼1

xtx
0
t þ aD�1

wt�1

 !�1

xT

!

Proof To obtain the predictive distribution for normal/

Gaussian likelihood with sequence S, we need to solve the

following:

pðyjxT ; ST�1Þ ¼
Z

Rn
pðyjxT ;wÞpðwjST�1Þdw ð5Þ

with the prior distribution (2) and the posterior is:

pðwjST�1Þ ¼
QT�1

t¼1 pðytjxt;wÞ
� �

pðwÞ
R

Rn

QT�1
t¼1 pðytjxt;wÞ

� �

pðwÞdw
ð6Þ

Thus, the predictive distribution at time T for y given the

sequence ST�1 ¼ x1; y1; ::; xT�1; yT�1 requires evaluation of

the following integral:

R

Rn
1
ffiffiffiffiffiffiffi

2pr2
p e

ðw0xT�yÞ2

2r2
QT�1

t¼1
1
ffiffiffiffiffiffiffi

2pr2
p e

ðw0xt�yt Þ2

2r2 exp � a
2r2 w

0D�1
wt�1

w
� �

dw

R

Rn

QT�1
t¼1

1
ffiffiffiffiffiffiffi

2pr2
p e

ðw0xt�yt Þ2

2r2 exp � a
2r2 w

0D�1
wt�1

w
� �

dw

ð7Þ

Let g ¼ 1
2r2 and,

LwT ¼
X

T

t¼1

ðyt � w0xtÞ2 ¼
X

T

t¼1

y2t � 2w0
X

T

t¼1

xtyt

 !

þ w0
X

T

t¼1

xtx
0
t

 !

w

ð8Þ

The posterior distribution Lemma 3 can be thought of

online variant of the posterior obtained by Park and Casella

[2], since the posterior predictive distribution is a weighted

average over parameter space where each parameter is

weighted by its posterior probability (see (5) and for further

details see for example [14]). h

By applying Lemma 1, we lift the condition on weights

and get the following explicit algorithm for OSLOG. We

place the absolute value of each element of the weight

vector on the diagonal of a matrix that has all off diagonal

entries zero and in the algorithm we denote it as:

diagðjwt�1;1j; . . .; jwt�1;njÞ ¼ diag(absðwÞÞ:

Remark 2 In Algorithm 1, line 8 can be allowed to make

passes until convergence to have higher level of sparsity.

We know from the sequential compactness theorem (see

for example [15]) that any closed and bounded sequence in

Euclidean space converges. Further details can be found in

[16–18]. Theorem 8 in [3] shows that SLOG converges to

the lasso solution under some regularity conditions.

In Algorithm 1, the matrix A�1 is symmetric and posi-

tive definite, so its inverse exists at each trial. At each trial,

the system of equations solved is unique without making

stochastic assumptions. However, calculating the posterior

predictive distribution involves measures and integrals.

Therefore, for measure, we assume consistency with the

topological space. It is also assumed that the prediction

space is a topological space equipped with r�algebra, and

the set of parameter w 2 H ¼ Rn is equipped with r�
algebra.1

3 Analysis of the performance guarantee

The goal is to formulate the upper bound on the cumulative

squared loss. Theorem 1 implies that the prediction of

Algorithm 1 corresponds to the mean of the posterior

predictive parameter w weighted by the posterior proba-

bility [14]. Interestingly, Kivinen and Warmuth [19]

showed that the likelihood of the weighted average can be

interpreted as the loss of the online Bayesian strategy.

In the following, We denote the cumulative squared loss
PT

t¼1ðyt � w0xtÞ2 by LwT and set AT to be
PT

t¼1 xtx
0
t þ aD�1

wt�1

� �

.

Theorem 2 For any trial t ¼ 1; 2; . . .; T , any a[ 0 the

following holds:

1 This is a mild assumption which is always satisfied in practice. Not

making such assumption will lead to counter intuitive results such as

Banach–Tarski paradox. For details, see, for example, [18].
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LTðOSLOGÞ� inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 2n ln
16Y2

a
ffiffiffi

p
p

� �

þ ln det
AT

8Y2

� � ð9Þ

where yt 2 ½�Y ; Y� such that Y � 0 and absolute value of

each element of the weight vector at T � 1 is not zero.

Proof To prove the theorem considering the following

lemma and the remark:

Lemma 4 For prior (2) at time t ¼ 1; 2; . . . the cumulative
loss of OSLOG is:

LtðOSLOGÞ ¼ logb

Z

Rn
bL

w
T pðwÞdw

where b ¼ e�g.

Proof One could proof the statement by noticing that

Bayesian strategy Q such that fQwjw 2 Rng with prior p(w)
is defined by:

Q ¼
Z

Rn
QwpðwÞdw

So, the main statement of the lemma is the definition of

logb Q. Hence, it holds by the definition of the Bayesian

decision rule. This is a popular approach for online

Bayesian algorithms, see, for example, [20]. h

Remark 3 From [19], we know the equality ‘‘ ¼ ’’ in the

above lemma is replaced by the inequality ‘‘ � ’’ for g ¼
1

8Y2 such that LwT is (8) and the outcomes are bounded in

½�Y ; Y �. In other words, for any value of g[ 1
8Y2, b

ðyt�w0xtÞ2

will not be concave for w0xt.

The problem is reduced to evaluating the integral of

Lemma 4. For direct evaluation of the integral, see Theo-

rem 3 of Chapter 2 in [21].

logb

Z

Rn
dw

ag
2

� �n

� exp �gw0
X

t

s¼1

xsx
0
s þ aD�1

wt�1

 !

w

 

þ 2g
X

t

s¼1

ysxs

 !

w� g
X

t

s¼1

y2s

!

ð10Þ

Remark 4 The integral to be calculated is of the form:
Z

Rn
e�f ðwÞdw ¼ e�f0

pn=2
ffiffiffiffiffiffiffiffiffiffi

detA
p

where f0 ¼ infw f ðwÞ. Notice,

f ðwÞ ¼ �
X

t

s¼1

2ysðw0xsÞ
 !

þ w0 aD�1
wt�1

þ
X

t

s¼1

xsx
0
s

 !

wþ
X

t

s¼1

y2s

We proceed by differentiating with respect to w:

Of ðwÞ ¼ �
X

t

s¼1

2ysxs

 !

þ 2w0 aD�1
wt�1

þ
X

t

s¼1

xsx
0
s

 !

Clearly the second differential is negative implying the

infimum is attained and by substitution the result is

obtained.

From (10) and as per Remark 3:

LTðOSLOGÞ ¼ logb

Z

Rn
dw

ag
2

� �n

� exp �gw0
X

T

t¼1

xtx
0
t þ aD�1

wt�1

 !

w

 

þ2g
X

T

t¼1

ytxt

 !

w� g
X

T

t¼1

y2t

!

¼ logb e
�g inf LwTþajjD

�1
2

wt�1
wjj22

� �

pn=2

det g
PT

t¼1 xtx
0
t þ aD�1

wt�1

� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ logb
ag
2

� �n pn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det gAT

p
� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ logb
ag
2

� �2n
2 pn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det gAT

p
� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

� 1

2
logb

2

ag

� �2n
det gAT

pn

 !

inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

� 1

2
logb

4

a2g2p

� �n

det gAT

� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

� 1

2

ln 4
a2g2p

� �n

det gAT

� �

ln b

� inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

� 1

2

ln 16Y4

a2p

� �n

det AT

8Y2

� �

� 1
8Y2

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2ln
256Y4

a2p

� �n

det
AT

8Y2

� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2n ln
256Y4

a2p

� �

þ Y2 ln det
AT

8Y2

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 2n ln
16Y2

a
ffiffiffi

p
p

� �

þ ln det
AT

8Y2

� �

ð11Þ

h

Bounding jjxtjj1 �R and C� jjwjj1 �P for t ¼
1; 2; . . .; T and denoting elements of diagonal matrix Dwt�1

by dij. Now we upper bound the following expression:

ln detAT ¼ ln det aD�1
wt�1

þ
X

T

t¼1

xtx
0
t

 !

We use Beckenbach and Bellman [21] Theorem 7 (in

Chapter 2) to bound the determinant, i.e.
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ln detAT � ln
Y

n

i¼1

a

dii
þ
X

T

t¼1

ðxt;iÞ2
 !

�
X

n

i¼1

ln aC�1 þ TR2
� �

ln detAT � n ln aC�1 þ TR2
� �

¼ n ln
aþ CTR2

C

ð12Þ

Corollary 1 For any trial t ¼ 1; 2; . . .; T and any a[ 0

such that jjxtjj1 �R and C� jjwjj1 �P, the following

holds:

LTðOSLOGÞ� inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ nY2 ln
32Y2ðaþ CTR2Þ

a2Cp

� �

for yt 2 ½�Y ; Y �, such that Y � 0 and C 6¼ 0.

Proof From Theorem 2 and (12), we write:

LTðOSLOGÞ

� inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 2n ln
16Y2

a
ffiffiffi

p
p þ n ln

aþ CTR2

8Y2C

� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 n ln
256Y4

a2p
þ n ln

aþ CTR2

8Y2C

� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 n ln
256Y4ðaþ CTR2Þ

8a2pY2C

� �� �

¼ inf
w

LwT þ ajjD�1
2

wt�1wjj22
� �

þ Y2 n ln
32Y2ðaþ CTR2Þ

a2Cp

� �� �

We may write the above expression as follows:

LTðOSLOGÞ� LwT þ aP2C�1 þ nY2 ln
32Y2ðaþ CTR2Þ

a2Cp

� �

h

AAR mentioned in [22] has the following guarantee:

LTðAARÞ� inf
w
LwT þ aP2 þ nY2 ln 1þ TR2

a

� �

ð13Þ

and the guarantee of OSLOG is as follows:

LTðOSLOGÞ� inf
w
LwT þ aP2C�1 þ nY2 ln

32Y2ðaþ CTR2Þ
a2Cp

� �

The following theorem shows that under certain conditions

OSLOG has a better guarantee:

Theorem 3 If jjxtjj1 �R and C� jjwjj1 �P such that

C� 1, a� 32Y2

p , and n is some positive integer, then 8t; the
following holds:

LUT ðOSLOGÞ� LUT ðAARÞ

where LUT ð:Þ denotes the upper bound on the cummulative

squared loss.

Proof We show that LUT ðOSLOGÞ � LUT ðAARÞ� 0. From

(13) and Corollary 1, we write:

aP2 1

C
� 1

� �

þ nY2 ln
32Y2ðaþ CTR2Þ

a2Cp

� �

� nY2 ln
aþ TR2

a

� �

� 0

aP2 1

C
� 1

� �

þ nY2 ln
32Y2ðaþ CTR2Þ
aCpðaþ TR2Þ � 0

For C� 1, aP2 1
C � 1
� �

� 0. It is clear that jjwjj � jjD�1
2

w wjj
for C� 1. The condition a� 32Y2

p ensures that

paCðaþ TR2Þ� 32Y2ðaþ CTR2Þ. This concludes the

proof. h

4 Empirical study

To show2 the usefulness of our suggested algorithm com-

pared to the baselines, aggregation algorithm for regression

(AAR) and online ridge regression (ORR) [22], two real-

world data sets, gaze data and Istanbul stock exchange

data, are used.

Gaze data [23] consist of 450 observations of 12 features

related to measurements obtained from head-mounted

cameras for eye tracking, estimating the positions of the

eyes of the subject when the subject is looking at the

monitor. The dependent variable is the position of the

marker displayed on a computer monitor. We expect

cameras to lose their calibration occasionally (high

variance).

Istanbul stock exchange (ISE) Akbilgic et al. [24] data3

have 536 observations with 8 attributes that are: S&P 500

Index, Deutscher Aktien Index, FTSE 100 Index, Nikkel

Index, Bovespa Index, Bovespa Index, MSCI Europe Index

Table 1 Performance comparison

Algorithm Mean Variance CSL R2

Gaze data

AAR 504.26 46851.78 7901991 0:747

ORR 507.78 940718.40 406403726 0.042

OSLOG 544.79 41697.51 35829520 0.059

Istanbul exchange stock data

AAR 0.002 0.0003 0.032 0.873

ORR 0.002 0.0004 0.0232 0.903

OSLOG 0.002 0.0004 0:0210 0:912

Bold values indicate the results for the proposed algorithm OSLOG

2 All algorithms are available from SOLMA library: https://github.

com/proteus-h2020/proteus-solma.
3 https://archive.ics.uci.edu/ml/datasets/ISTANBUL?STOCK?EXCHANGE.
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and MSCU Emerging Markets Index. Day and time sort all

the attributes. The goal is to make the prediction of ISE in

USD.

We evaluate their accuracy and efficiency. We use 20%

of the data to find the best tuning parameter a[ 0, and

then, we fit all the algorithms on the data in an online

mode.

For the sake of analysis of the performance, we report

the mean, variance, cumulative squared loss (CSL) and the

R2 statistic of the predicted outcomes for each data set.

Table 1 shows that in the case of gaze data, AAR outper-

forms all the algorithms, ORR being the worst. On Istanbul

Table 2 Computational efficiency comparison in milliseconds

Alg. Min. LQ. Mean Median UQ. Max.

Gaze data

AAR 115.30 116.73 120.73 119.80 122.05 150.11

ORR 119.12 121.90 126.06 124.11 1126.55 203.90

OSLOG 65:21 70:58 72:62 72:78 74:03 88:21

Istanbul exchange stock data

AAR 111.58 116.21 119.14 118.17 120.32 174.21

ORR 110.95 116.17 119.22 117.60 120.59 160.95

OSLOG 74:74 80:00 82:86 82:59 84:75 127:25

Bold values indicate the results for the proposed algorithm OSLOG

Fig. 2 Effect of sparsity and

multicollinearity on AAR and

OSLOG
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stock exchange data OSLOG outperforms all the algo-

rithms, AAR being the worst (please see Table 2).

The empirical study shows that when the statistical

assumptions of normality is violated, AAR is likely to

perform better than OSLOG. However, when statistical

assumptions are satisfied, OSLOG is likely to outperform

AAR.

Figure 2 studies the effect of sparsity and multi-

collinearity on OSLOG. The true model: y ¼ Xwþ � is

considered. To study sparsity, simulation is conducted

using 1000 observations and 100 predictors. The sparsity

plot is generated by varying the number of predictors in the

true model from 2 to 100. The plot illustrates that as the

sparsity decreases, the RMSE increases for both AAR and

OSLOG. The aim of the second plot is to study multi-

collinearity. It shows no clear pattern, which indicates that

multicollinearity sometimes helps OSLOG to estimate the

error term. However, this is not the case for AAR, as

multicollinearity increases, RMSE also increases. On the

other hand, OSLOG handles multincollinearity and sparsity

better, mainly because at each trial OSLOG weights are

updated. This is not done for AAR (there is no explicit

update of weights in the AAR algorithm). The simulation is

done by considering correlation in predictors, i.e.

CovðXÞij ¼ mji�jj, where m ¼ 0:1; 0:2; . . .; 0:9.

5 Conclusion

We proposed an online algorithm for SLOG regression and

presented its performance guarantee (without making any

distributional assumptions) with regret bounded by a log-

arithmic function of T. Our online formulation of SLOG

does not require a hierarchical structure. Another funda-

mental difference in SLOG and OSLOG is that SLOG

requires r2 ! 0, while OSLOG requires r2 ¼ 4Y2. In this

sense, OSLOG could be considered as an online variant of

the Bayesian lasso with known fixed r2.
The empirical study shows that when the assumptions of

multicollinearity and sparsity are violated, OSLOG is much

better compared to the other algorithms. But, when the

assumption of normality is violated, AAR performs a little

better compared to OSLOG. Thus, if the underlying sta-

tistical properties are unknown, OSLOG is a better choice

as a trade-off between normality, multicollinearity and

sparsity.

One of the interesting future research directions as a

follow-up of this study is to investigate the tightness of the

given guarantee. Also as a natural extension, it is quite

appealing to explore other loss functions besides the

squared loss function.
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